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The Sun and the giant planets rotate and possess deep shells of convection. Some basic 
aspects of prototypical global convection have been studied with a laboratory model 
operated in the microgravity environment of Spacelab 3 that flew on the space shuttle 
Challenger in May 1985. This experiment studied thermally driven circulations within 
a rotating hemispherical shell of fluid across which are imposed radial and latitudinal 
temperature gradients. The radial force of gravity is modelled by imposing a strong 
electric field across the shell, with dielectric polarization forces producing radial 
accelerations proportional to temperature. When the influence of rotation is large, 
the experiments yield north-south oriented columnar convection in equatorial and 
subequatorial regions. As the differential heating is increased, these roll-like cells 
interact with mid-latitude waves, ultimately being destroyed by turbulent, hori- 
zontally isotropic convection that moves down from the pole. When a significant 
equator-to-pole temperature difference is imposed on the boundaries, spiral waves 
develop on top of a strong meridional circulation. Intricate, non-axisymmetric, 
convective patterns that propagate in longitude and evolve in time are described. 
Schlieren visualizations of these laboratory flows are compared with three- 
dimensional nonlinear simulations. 

1. Introduction 
Large-scale atmospheric motions driven by thermal forcing on rotating planets like 

Earth are largely controlled by buoyancy and Coriolis forces. Circulations seen in the 
atmospheres of the giant outer planets like Jupiter, Saturn and Uranus, and probably 
extending deep within these gaseous planets, must also be dominated by these forces. 
A combination of buoyancy and Coriolis forces is also likely to control global-scale 
flows in the convection zones of rotating stars like the Sun. Certainly the motions 
that result are likely to be quite different, for the energy sources that drive these 
various forms of convection range from differential solar heating for Earth, to a 
mixture of insolation and gravitational contraction for the gaseous planets, and to 
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nuclear burning for a star. Yet a unifying feature of all these objects is that they are 
spherical and that they rotate, and thus the horizontal component of the Coriolis force 
varies with latitude. This variation is thought to be crucial in determining the 
differential rotation of the Sun and the structure of its giant convection cells (as 
reviewed, for example, by Gilman 1986), the cloud-band orientations and zonal flows 
on Jupiter and Saturn (e.g. Ingersol et al. 1980; Busse 1983), large-scale waves and 
the mid-latitude jet streams on Earth (e.g. Charney 1947; Charney & Drazin 1961)’ 
and the generation of magnetic fields by dynamo action in many of these objects (e.g. 
Moffatt 1978; Parker 1979). All of these thermally driven flows are of sufficient scale 
in the north-south direction that the sphericity and the resulting latitudinal variation 
of Coriolis force have a strong influence on the dynamics. 

It has been difficult to model such spherical flows properly in the terrestrial 
laboratory : the rotation 52 and gravitational acceleration g vectors must be parallel 
to avoid oscillatory gravity in the rotating reference frame, whereas in planets and 
stars 52 and g are stationary and range from parallel a t  the pole to perpendicular at 
the equator. Thus the full latitude dependence of Coriolis forces on spherical surfaces 
has been hard to  capture. Busse & Carrigan (1976) and Carrigan & Busse (1983) have 
used the centrifugal-buoyancy effect to advantage in laboratory studies of convection 
in spherical shells. I n  their model ‘gravity’ is everywhere nearly perpendicular to 
the axis of rotation. The centrifugal-buoyancy experiments have illustrated and 
confirmed several previously predicted properties of convection in equatorial and 
mid-latitude regions of very rapidly rotating objects. These properties include a 
preferred orientation of convection along the axis of rotation in the form of ‘banana 
cells’ (Busse 1970, 1973; Durney 1970). Our experiments show similar convective 
structures in the appropriate parameter ranges (i.e. high Taylor number, spherically 
symmetric differential heating). We have also observed several phenomena that 
appear to depend crucially on the varying orientation of g and 52 as one moves 
from equator to pole, and which could not be studied in the centrifugaI-convection 
apparatus where the component of gravity parallel to the axis of rotation is neglected. 
For example, the centrifugal-convection experiment cannot consistently address 
interactions of polar and equatorial convection modes, nor be used to study the 
evolution of the global-scale convective structures that occur at low rotation rates 
and which span large extents in latitude. 

We have developed and tested a method for studying convection within a rotating 
spherical shell of fluid, using electrohydrodynamic polarization forces to generate the 
required radial buoyancy forces. I n  a dielectric liquid subject to imposed electric-field 
and thermal gradients, there will be temperature-dependent polarization forces 
present in addition to normal buoyancy. However, the electrostatic ‘radial gravity ’ 
resulting from the polarization forces is relatively weak (typically one-tenth of the 
value of terrestrial gravity g), and therefore experiments that are not to be 
contaminated by g-effects need to be conducted in a microgravity laboratory. Our 
only reason for going into space with this experiment is to effectively turn off the 
unidirectional gravity which masks the fundamental dynamical interactions that we 
wish to observe. The flight of the Spacelab 3 microgravity laboratory onboard the 
space shuttle Challenger in May 1985 enabled us to  conduct such electroconvection 
experiments using our instrument, the ‘Geophysical Fluid Flow Cell ’ (or GFFC). 

As described briefly in Hart  et al. (1986) and elaborated in $2 of this paper, the 
GFFC experiment is a differentially heated, hemispherical shell of fluid, containing 
dielectric silicone oil, which is mounted on a turntable that rotates a t  constant 
specified rates. Zonally symmetric temperatures are maintained on the boundaries 
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by computer-controlled heaters and coolers. The thermal boundary conditions are 
axisymmetric, but allow for both inner- and outer-surface temperature variations 
with latitude. An alternating high-voltage applied between the inner and outer 
boundaries produces a radially directed, density-dependent electrostatic force that 
simulates a central gravity. Since the hemispherical shell of fluid is bounded on the 
outside by a transparent sapphire dome, the convective flow patterns are readily 
visualized by Schlieren and shadowgraph photography. 

The Spacelab 3 flight permitted us to perform experiments with the GFFC for 
about 110 h. These generated some 50000 photographic data frames that contain 
images of convective structures, instabilities and turbulence, under varying con- 
ditions of differential heating and rotation. Several new types of convection were 
observed : mid-latitude waves interacting with the low-latitude columnar convection 
rolls previously studied by Carrigan & Busse (1983), ‘spiral waves’ near the poles 
when latitudinal heating gradients are present on the bounding surfaces, and 
‘triangular waves ’ coupling mid-latitude and equatorial disturbances under similar 
differential heating. I n  addition, we also observed the breakdown of the banana cells 
as the combination of electrodynamic gravity and differential heating that serves to  
drive the convection is increased. 

Our goals are to  elucidate, with a combination of laboratory experiment and 
numerical computation, some of the more fundamental aspects of convection in 
simple spherical cavities of relevance to  both planetary and stellar dynamics. For 
instance, how does convection redistribute angular momentum within shells of fluid 
which are unstably stratified, does the resulting differential rotation have varying 
forms depending upon the magnitude of imposed latitudinal gradients in tempera- 
ture, and what are the cell shapes and wavy disturbances of global-scale convection 
as the rotational constraint and the differential heating are varied to span both high 
and low rotation rates, and both spherically symmetric and latitudinally varying 
differential heating ? 

In  $2 we begin by discussing some basic principles of electrohydrodynamics, 
showing how these led to the design of the GFFC instrument and its manner of 
operation. The reduced equations and boundary conditions are also presented. In  $ 3  
we show some of the experimental results from the flight of the instrument on 
Spacelab 3, briefly illustrating the variety of convection achieved by varying the 
imposed radial and latitudinal temperature gradients, rotation rates and the strength 
of the electrostatic gravity. I n  $4 we compare the results with those obtained from 
our nonlinear three-dimensional simulations of such convection, finding general 
agreement a t  the more modest parameter values that are accessible using present-day 
supercomputers. I n  $5 we summarize what we have found so far from our analysis 
of these experiments carried out in the microgravity laboratory. 

2. Description of the experiment 
We first show how electrodynamic polarization forces in a dielectric liquid can be 

used to enable the study of thermal convection in a spherical shell with radial gravity. 
Certain constraints on the experimental parameter ranges, due to the physical 
properties of available fluids that are safe enough to  be used on manned spaceflights, 
will be discussed. The basic idea of using dielectrophoretic effects to model flows with 
central buoyancy forces was apparently first suggested by Smylie (1966) who gives 
a preliminary description of a model of convection between two cylinders, across 
which both differential temperatures and voltages are applied. We were unaware of 
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this paper when we initiated our design in 1971. The experimental study of rotating 
flows in spherical geometry that are of interest to geophysicists and astrophysicists 
presents more of a technical than a conceptual challenge. A central issue is the 
visualization of spatial structures in convecting fluids that are so highly stressed 
(electrically) that the insertion of probes or particles is impossible. This section 
describes the basic principles of the experiment, the techniques used for monitoring 
the motions and controlling the boundary conditions, and the interface with the 
astronaut operators. 

2.1. Electrohydrodynamics 

The basic Boussinesq equations of motion for a rotating dielectric liquid are 

av 1 F 
- + ( ~ . V ) v + 2 5 1 x v  = - ~ V p + v V 2 v + g o l T F - a T Q 2 r L + ~ ,  
at P P 

v - v  = 0, (2) 

V - s E  = eV.E+Ve*E = q ,  V x E = 0, (4% b)  

9 + ( v * V ) q  at = -V.J ,  (5) 

aT a€ D E ~  
- + ( v * V ) T - K V ~ T =  @ + - T -  
at i3T Dt 

where v is the velocity, p the pressure, p the density, v the kinematic viscosity, SZ 
the basic rotation rate, g the gravitational acceleration (unidirectional in the terres- 
trial laboratory, fluctuating in the orbiting vehicle), a the thermal expansion 
coefficient, rI  the perpendicular distance from the axis of rotation, and F the vector 
body force due to electrical effects. In (3)-(5) e is the dielectric permittivity, q the 
free-charge density, E the electric field, and J the electric current. In the energy 
equation (6), T is the temperature, K the thermal diffusivity, @the dissipative heating 
(containing both the kinetic and electric parts), and c is the specific heat. Equations 
(3)-(5) are discussed in standard textbooks (e.g. Panofsky & Phillips 1955; Stratton 
1941), and (6) is familiar except for the term depending on E that represents the work 
done by the electric forces (Finlayson 1970). Of all the electric effects usually present 
in this latter equation, this work term, along with the dissipative heating contained 
in @, will represent the dominant electrodynamic effects. 

The equations written above are supplemented by the equations of state that are 
taken to be 

p =P( l  -aT) ,  

e = E(l-yyT), 

J =  aE,  

where y is the change of e with temperature, s the ambient permittivity (constant), 
p the ambient density (constant), and a the electrical conductivity of the fluid. 

There are many classes of electrohydrodynamic motions that are described by these 
equations and associated boundary conditions. These are reduced somewhat if 
impermeable and infinitely conducting boundaries (both electrically and thermally) 
are imposed, since then the electrohydrodynamic and surface-tension induced 
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instabilities that occur when free surfaces are present (as described, for example, by 
Melcher & Taylor 1969 and Ostrach 1982 respectively), and which do not have 
obvious large-scale geophysical analogues, are suppressed. We next observe that 
because the fluid is incompressible, no flows will be induced by the last term in (3) 
which represents electrostriction and contributes only to a modified pressure. There 
is still a large group of motions that can be attributed to, or modified by, charge 
transport in the fluid. The charge transport can be affected by thermally induced 
changes in the conductivity leading to electroconvection, even in stably stratified 
fluids (Roberts 1969; Turnbull 1971 ; Worraker & Richardson 1981). Instabilities 
related to charge separation can also occur in an isothermal weakly conducting fluid 
(Atten & LaCroix 1979, and references therein, give both theoretical and experimental 
evidence). Since we are interested in buoyant, or thermally induced motions, it is 
necessary to eliminate the first term in (3). This is done by considering flows only 
in an alternating electric field where the frequency of oscillation o is chosen to be 
very large with respect to the charge relaxation frequency, or, using the data in 

(10) 
table 1, 

w % z- x 0.2 s-1. 
U 

e 

That the remaining force term in (3) leads to electrodynamic buoyancy is easily 
seen by combining this term with the state equations (7)-(8), and removing all 
contributions that can be subsequently written as the gradients of a scalar ‘modified 
pressure’. The only remaining bulk force per unit mass that contributes to vorticity 
generation in the fluid is thus 

(11)  F =--- qT V ( E . 4 .  
2P 

em 

It is therefore seen that E*E acts like a geopotential, and that y plays the role of 
the thermal expansivity in the usual Boussinesq buoyancy term. The electric field 
E is found by solving (4) with q = 0. Note that because e varies, E will not in general 
be radial or uniform, even between parallel plates at constant potentials V, and V,, 
say. This latter case was studied by Turnbull & Melcher (1969), who showed that 
gradients of E2 generated by variations in c(T)  could lead to thermally coupled 
electroconvection. If the boundary shapes are such that VE2 is strongly non-zero even 
under isothermal conditions, effects due to variations of e with Tin (3) will be of minor 
importance. Thus we make the assumption, equivalent to that usually made for a 
Boussinesq liquid, that e is assumed constant except where multiplied by the 
electrostatic ‘gravity ’, SVE212p. The Clausius-Mossoti relation 

_ -  y - (6 - EO) (2 + 2 4  
01 3e0E ’ 

where c0 is the vacuum permittivity, shows that for our working fluid y is only slightly 
smaller than the thermal expansion coefficient a, so this is a good assumption when 
V E 2  is forced to be large. 

2.2. Design considerations 
Figure 1 shows a schematic of our experiment. The inner boundary is a nickel-plated 
steel sphere. The outer shell is made up of a transparent sapphire hemispherical dome 
with a transparent Indium-oxide electrically conducting coating applied to its inner 
surface. It is connected at the equator to a lower hemispherical dome made out of 
aluminium. The radii of the inner and outer surfaces are R, and R, respectively. A 
300 Hz a.c. voltage V is applied across the dielectric working fluid, a low-viscosity 
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Rotation 
axis 

Optical WJ 

FIGURE 1 .  Cross-section of the test cell used to study global convection in a rotating hemispherical 
shell of fluid in the presence of an electrostatic radial gravity field. That gravity is achieved by 
imposing an alternating potential V across the fluid shell. The dielectric silicone working fluid is 
bounded on the outside by a transparent sapphire dome to allow optical probing of the flows and 
thermal structures that accompany the convection driven by differential heating. 

Nominal Fluid Properties (Dow Corning 0.65 cs 200 Fluid) 

Ambient density P 760 kg/m3 
Expansivity U 1.34 x 1 0 - 3  OC-1 

Kinematic viscosity V 6.5 x m2/s 

Ambient permittivity & 2.56, 

Dielectric variability Y 1.29 x 10-3 oc-1 

Heat capacity C 1.7 x lo3 joules/kg "C 

Thermal diffusivity K 7.7 x lo-* m2/s 

Vacuum permittivity €0 8.90 x farad/m 

Conductivity U mho/m 

Dissipation loss factor 9 z 4 x  

Nominal Experiment Parameters 

Rotation rate a 0-3 rad/s 
Radial temp. difference AT, 0-25 O C  

Voltage (r.m.s.) V 0-10 kV 
Voltage frequency 0 300 Hz 
Inner radius Ri 2.402 cm 
Outer radius Ro 3.300 cm 

d 0.908 cm 
Aspect ratio B = Ri/d 2.65 
Prandtl number Pr 8.4 

Gap 

TABLE 1 

silicone oil whose nominal properties are listed in table 1 .  The experiment is conducted 
in the upper hemisphere; a teflon baffle fills the annular space below the equator down 
to a narrow neck that carries thermal and electrical lines to the inner sphere (not 
shown in figure 1, but an exterior view can be seen in figure 2). Because of this narrow 
feedthrough at the south pole, the device is not a true spherical capacitor, and fringing 
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fields with non-spherically symmetric potentials will exist. However at and above 
the equator, E varies essentially as r-3r. I n  the working fluid the electrodynamic 
buoyancy force can thus finally be written as 

Fern = gap, (13) 
with an effective electrostatic gravity 

26 Vims P2RE 
go = ( 1  + p)3 d3pr5 ' 

where d is the gap width R,-R,, and p is the geometric aspect ratio R J d .  The 
'gravity' falls off like rP5, instead of like rP2 as one might like for geophysical 
modelling. This problem has been addressed by Hart & Toomre (1977) who studied 
the linear instability problem in spherical shells with varying gravity distributions. 
For the aspect ratio of the experiment, the linear eigenfunctions are almost identical 
(see also Markiewicz & Aldridge 1982), suggesting that the qualitative structure of 
the observed convective motions would be expected to  persist in the presence of an 
inverse-square-law gravity. 

Several compromises in the design of the spherical convection experiment now 
become evident. One would like a large value of d and Ri so that  nearly inviscid and 
rapidly rotating flows [i.e. high Taylor and Rayleigh numbers, as defined below in 
(18) and (19)] can be studied. However as Ri and d increase the electrostatic gravity 
falls rapidly. I n  addition, an essentially radial buoyancy force is only attained if the 
centrifugal acceleration Q2rl is small compared with go. This constraint also leads to  
small spheres and moderate rotation rates. I n  the end, the specifications in table 1 
were chosen to  enable the study of a large range of slowly and rapidly rotating 
convection problems with Taylor numbers from 0 to  6 x lo5 and Rayleigh numbers 
(based on go a t  the outer sphere) from 0 to  over lo6. The latter value is well over one 
hundred times critical a t  Taylor numbers less than about lo6. 

When the parameters are chosen to optimize the experimental parameter-space 
range, it quickly becomes obvious, upon comparing go with g, that  unless a liquid 
with a very large value of 6 is used, terrestrial gravity will swamp out the weak (less 
than 1 m/s2) electrostatic radial acceleration. Unfortunately such fluids tend to be 
polar with low dielectric strengths, have large viscosities, and are usually highly toxic. 

2.3. Reduced equations and boundary conditions 
With the assumptions outlined above we can write the non-dimensional equations 
of motion using scales d for position, d2/K for time, K/d for velocity, ATr (the imposed 
radial boundary temperature difference) for temperature, and K2ii/d2 for pressure. 
The flow relative to the static field that ensues when the boundary temperatures 
are uniform on spherical surfaces, and within a coordinate system rotating at the rate 
Q, is thus governed by 

V - v  = 0, (15) 

( ' ') T? + Ta: Pr v x 0 + Pr V 2 v  + u x (V x V )  - iVv2, ( 16) 
av 
-=-Vp+RaPr __ 
at 

The thermal equation has been reduced by ignoring the electrical and viscous 
dissipation terms, which are always small compared with conduction. The unidirec- 
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tional gravity has been suppressed, and only the electrostatic gravity is retained. The 
non-dimensional numbers in the above equations are 

the Rayleigh number 

the Taylor number 
T a = ( y )  2Qd2 

V 

K 
the Prandtl number Pr = -, 

and the aspect ratio 

These are the equations used in our numerical modelling effort described in $4.  
They are equivalent to  those usually used in geophysical fluid dynamics to study 
global convection when compressibility, chemical, radiative and latent-heat effects 
are ignored. Although such processes can be important in natural flows, there are 
many fundamental issues to  be resolved in systems where they are absent. The studies 
of Chandra & Smylie (1972) and Hart  (1976) concluded that solutions of these 
equations are in agreement with terrestrial experiments on convective instabilities 
in a cylindrical annulus, and on Hadley flows in a differentially heated non-rotating 
spherical shell respectively. 

The boundary conditions are that v vanishes on all walls of the hemispherical 
annulus (i.e. a t  r = /3 and r = 1 +/?for all latitudes 8 > 0, and at the equatorial barrier 
a t  8 = 0). Latitudinally varying temperatures q ( 8 )  and To(@ are specified on the 
inner and outer spherical surfaces respectively. For all the experiments reported here, 
only convectively unstable cases with q > To everywhere are considered. We 
generally wish to investigate combined radial and latitudinal differential heating. 
The various cases to  be considered can be distinguished by the dimensionless heating 

AT0 
parameter 

H = -  
ATr ’ 

the ratio between the pole-to-equator temperature difference present along both 
boundaries (positive for a hotter pole) to the average radial difference. In  our 
experiments H is either zero (spherically symmetric heating) or positive (with 
relatively warmer inner and outer poles). This latter preference was required by the 
design of the instrument’s optics. A polar cooler would obscure the visualizations. 
I n  addition, i t  was thought, in view of the observed heat balance for Jupiter (Ingersol 
1976), that  such hot inner-pole objects might be of interest in the study of Jovian 
dynamics. 

2.4.  The GFFC instrument 

Figure 2 (Plate 1) shows the sphere assembly mounted on a rotating turntable. The 
turntable supports the high-voltage supply as well as several thermoelectric heaters 
and coolers along with associated pumps and circuitry to control the latitudinal 
temperature distributions q ( 8 )  and To(@ on the bounding surfaces of the working 
fluid. These boundary gradients are maintained by individual heater elements 
embedded just ‘below ’ the surfaces, and permit the simulation of large-scale flows 
with latitudinal heating differentials as mentioned above. One can see a thermistor 
chain running down the right-hand side of the sphere that provides information to 
a servo controller which regulates the imposed temperatures. Similar sets of detectors 
are just below the metal surface of the inner sphere. 
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FIGURE 2. The rotating turntable supporting the high-voltage power supply (left front), the circulation 
pumps (right rear), the fluid cell (top), and associated circuitry that controls the temperature distributions 
on the boundaries of the spherical annulus. The diameter of the sphere assembly is about 9 cm. 

HART. GLATZMAIER & TOOMRE (Facing p .  526) 
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FIGURE 5. Original images from the 16 mm data film showing various forms of convection under the 
following conditions. (a) Ra = 4.70 x lo3, Ta = 3.95 X lo‘, H = 0. (6) Ra = 7.59 X lo‘, Ta = 6.32 
x lo’, H = 0. (c) Ra = 3.79 x lo5, Ta = 6.32 x lo’, H = 0. (d) Ra = 1.62 x lo4, Ta = 1.09 X lo3, 
H = 0.82 (e) Ra = 2.08 x lo’, Ta = 1.09 x lo3, H = 0.85. fl Ra = 4.69 X lo‘, Ta = 1.09 X lo3, 
H = 0.94. (g) Ra = 9.34 X lo’, Ta = 1.09 X lo3, H = 0. (h) Ra = 1.56 X lo’, Ta = 6.32 X lo5, 
H = 1.14. (i) Ra = 1.91 x lo4, Ta = 3.95 x lo‘, H = 0.88. 

HART. GLATZMAIER & TOOMRE 
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FIGURE 8. Colour perspective views from the numerical simulations at one instant in time of the radial 
velocity at mid-depth within the upper-hemisphere. Red = outward, blue = inward; elevation is propor- 
tional to magnitude. These simulations study the interaction of columnar convection cells aligned with the 
rotation axis and dominant at low latitudes with more isotropic disturbances at higher latitudes. Such con- 
vective patterm involving 'banana cells' are achieved with rapid rotation and a purely radial temperature 
gradient ( H  = 0). ((1) 7 i r  = 3.8 x 10'. Rrr = 4.1 x 10'. (b) TLI = 6.1 x lo', Ru = 7.9 x 10'. 
HART. GLATZMAIER & TOOMRE 
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FIGURE 9. As in figure 8, but for a simulation concerned with slow rotation and combined radial and 
latitudinal temperature gradients, with Ta = 1.1 x lo’, Ra = 8.4 X IO’,,H = 1. The view of the eastern 
hemisphere in (a) reveals tilted, spiral updrafts extending from the pole to mid-latitude, and these coexist 
in the western hemisphere (6) with a north-south oriented cell involving a narrow updraft extending fully 
from the pole to the equator. 

HART GLATZMAIER & TWMRE 
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Data annotation 

FIQURE 3. Cross-section of the optical imaging system. 

uv 
Strobe 

Two methods of flow visualization, illustrated schematically in figure 3, are 
employed. A back-focus Schlieren system gives information on the radially averaged 
temperature structure in the convecting liquid. Light is passed through a Moirk 
grating of equally spaced lines and focused radially onto the inner spherical surface 
which is a polished mirror. The reflected rays, after being subject to refraction in the 
thermally perturbed liquid, are passed back through the grating and imaged onto 
16 mm film. There are two orientations of the Ronchi ruling, one sensitive to roughly 
east-west thermal gradients and the other to essentially north-south variations. 
Thus, in principle, two images can be combined to yield the temperature field. I n  
practice, pictures can only be taken sequentially with alternate gratings, and a t  
intervals 45" or greater in longitude with 2 s or more of elapsed time between frames. 
At high Rayleigh numbers there is sufficient temporal variation in the flow that 
successive images do not reveal data on the same pattern. However the Schlieren 
system does not perturb the flow, and does provide global information on the 
convective structure. 

It was intended that velocity data be obtained by using a photochromic dye called 
Spiro-Pyrane. This material darkens after stimulation by a collimated UV strobe, 
and subsequent 16 mm frames were shot to  record the deformation of the dye. 
Unfortunately the dye degrades with time, and after the instrument was inaccessible 
for more than a year and a half while being integrated into Spacelab 3, i t  was found 
that a t  flighttime the dye contrast levels were too low to be of much use. 
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Pole 

/ 

Equator 

FIGURE 4. The view of the working fluid, mapped onto the sphere. 

Both the dye and Schlieren data were imaged through the same wraparound optics 
system as shown in figure 3. The aspheric lenses provide coverage of a circular area 
mapped onto the hemisphere from equator to pole approximately as sketched in 
figure 4. Photographs were taken as the turntable rotated under the stationary optics 
assembly, at each 4 5 O  of longitude. Thus when the flows are weakly time dependent 
it is possible to reconstruct a full view of the hemisphere by combining 8 successive 
frames. 

I n  the early days of this project it was not obvious that a wholly interactive 
terrestrial-style experiment, with continuous television downlink, was feasible. As it 
turned out there were long periods during each orbit with loss of signal from the 
shuttle. In  addition astronaut time had to be shared with many experiments, and 
with limited resources available for interface development, i t  was decided to make 
the instrument reasonably self-contained. Thus, experiments were pre-programmed 
into a microprocessor that  set up various rotation rates, voltages and temperatures, 
and then commanded the cine camera to take sequences of pictures. Light-emitting 
diodes (at  the top-right of figure 3) that display information on the thermal and 
mechanical conditions of the experiment were also imaged onto each data frame. The 
astronauts initiated each 3 or 6 h experiment. The external conditions were set and 
photographs were taken over the entire duration of the run. Typically each case 
involved fixing the rotation rate and the heating, and then changing the applied 
voltage (or ‘gravity’) in small steps each hour. Apart from initiating experiment 
scenarios, and monitoring and reporting the status of the instrument, the astronauts 
(and the scientists on the ground) could not observe anything about the motions, and 
had to wait for the return of the shuttle and the processing of the data films. The 
interactive style of doing experiments, that will become more easily implemented in 
the future, would surely have been advantageous in studying secondary instabilities 
and transitions between various forms of convection. In  spite of this drawback, a 
surprisingly rich collection of observations were made in the 110 h of experiments 
run on Spacelab 3. A synopsis of the more interesting results is contained in the next 
section. 
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3. Experimental results 
3.1. Banana cells 

Figure 5 (Plate 2 )  shows raw data from several of the experiments. Recall that  the 
camera sees a circular view of the hemisphere as shown in figure 4 with the equator 
at the bottom and with the pole a t  the top, The sense of rotation in this figure, and 
in all other figures presented in this paper, is from right to left, so that east (prograde) 
is on the left. Figure 5(a-c) shows the evolution of the convective patterns a t  a high 
rotation rate as the Rayleigh number Ra is increased (by raising the voltage). These 
are Schlieren pictures sensitive to roughly east-west gradients. The first non- 
axisymmetric motions observed in this class of experiment, with moderate to high 
Taylor numbers and H = 0, always consist of slowly propagating columnar disturb- 
ances. The north-south symmetry in these modes is a consequence of the Taylor- 
Proudman theorem (Proudman 1916; Taylor 1921) which applies under these 
conditions if the differential heating is not too large. They extend from the equator 
to somewhat north of the so-called critical latitude, defined as the latitude where a 
vertical line tangent to  the inner sphere hits the outer boundary. Busse & Cuong 
(1977) argue that when a fluid column (parallel t o  the axis of rotation) moves away 
from the axis, the spherical boundaries force i t  to converge if it is outside a distance 
from the axis equal to the inner radius, i.e. outside the tangent cylinder. As a result, 
regions of vorticity parallel or anti-parallel to  the axis are enhanced on their prograde 
sides and diminished on the retrograde sides. Consequently, the convective pattern 
should propagate in a prograde direction. On the other hand, a fluid column inside 
the tangent cylinder diverges as i t  moves away from the axis; so patterns at high 
latitude should propagate in a retrograde direction. The critical latitude here is 43", 
and indeed it appears that  the direction of propagation switches sign in the vicinity 
of this latitude in agreement with these ideas. Because the columns bend in 
conformity with the spherical boundaries, they are often called banana cells. Such 
banana-cell patterns have been suggested by earlier calculations (Busse 1970, 1973 ; 
Durney 1970; Gilman 1975; Glatzmaier & Gilman 1981), and in previous multimode 
numerical simulations (Gilman 1977 ; Glatzmaier 1983). 

In  figure 5 (a )  the convection is relatively steady except for a weak prograde phase 
propagation of about 0.5" per basic rotation. When the Rayleigh number is increased, 
a different weakly retrograde motion ensues a t  mid- and high-latitudes in addition 
to the columnar cells in the equatorial regions. The gradients are stronger and the 
upwelling and downwelling regions are concentrated into narrow radial jets. The 
interaction between these two types of motion causes the erosion of the northward 
tips of the columns (figure 5b). This becomes more prominent as Ra is increased. 
Ultimately at very high Ra,  equatorial columns are limited to a narrow interval near 
the equator (figure 5c).  The vast majority of the sphere becomes extremely turbulent 
with convective elements that  appear to be more or less horizontally isotropic. 

3.2. Spiral waves 

Figure 5 (d-f) shows typical convection patterns when a substantial temperature 
gradient (with a hot pole) is imposed on the boundaries in addition to the unstable 
radial gradient. Now the fundamental instability over most non-zero Taylor numbers 
is spiral in nature and concentrated near the poles. The convective rolls tip west as 
one goes towards the equator. As Ra is increased these rolls break as branches form 
to make time-dependent interconnections. Yet there is still an average tilt, although 
the motion in figure 5 ( e ) ,  for example, is chaotic. We noticed that for several periods 
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during the one hour run yielding the flow shown in figure 5 ( d )  (and a t  slightly higher 
Rayleigh numbers as well), the spiral pattern occasionally would be broken at certain 
longitudes by a convective roll extending from pole to equator without any 
substantial tilt. These events were fairly persistent, lasting for many basic 
rotations. Examples are shown in figure 5(f) .  

3.3. Soccer baEls and other eases 
A slowly rotating case is illustrated in figure 5 (9 ) .  With H x 0 and low rotation there 
is no preferred direction imposed on the flow. Thus the planform observed a t  the end 
of this run is a slowly evolving tiling pattern. This case is discussed further in $4. 
Here we note that the updrafts (hot fluid) occur in narrow cell boundaries with broad 
(cooler) descending regions inside the polygons. We call this a ‘soccer-ball ’ pattern 
because of the narrow ascending lines that intersect in triplets, bordering regions of 
sinking fluid. 

Figure 5 ( h )  shows a peculiar pattern that results when rapid rotation is coupled 
with moderate radial and strong north-south heating. Equatorial columns reappear 
but interact with vigorous high-latitude disturbances to form persistent ‘ triangular- 
wave ’ intersections a t  mid-latitudes. These are interpreted in $4 as resulting from 
an interference effect. 

Finally we show a last example that is equally perplexing. When the rotation is 
moderate and H is about unity, we typically observe both equatorial columns at low 
latitudes and quasi-axisymmetric bands at high latitudes. We had hoped to observe 
the latter near the equator, since then we might have a candidate for the Jovian cloud 
belts. However figure 5 (i) shows the most axisymmetric instability that we observed, 
and i t  is in the wrong place for Jupiter. Strong meridional circulations are expected 
for H 2 1, and the data suggest that there is a multi-cell axisymmetric circulation 
that is unstable to convective columns near the equator, but persists, even in the face 
of interactions with the tips of the columns, near the pole. That the banana cells 
remain, even in the presence of (strong) meridional heating, is a result of rotation 
winning the competition with vertical shear (generated by the thermal wind) in 
shaping the instabilities. The banana cells are thus quite robust objects and the theory 
of Busse (1983) that describes zonal-band formation by nonlinear interactions of 
such cells (with H = 0) may apply when there is meridional heating as well. Our 
experiments did not operate in the extremely high Taylor-number range treated in 
that model. 

3.4. Energetics 
Figure 6 shows wavenumber spectra obtained from digitized representations of the 
16 mm Schlieren pictures. Recall that  there are two grating orientations, one yielding 
near east-west thermal gradients and the other near north-south gradients. The 
relative magnitudes of each give information on the degree of horizontal anisotropy 
in the flow. Figure 6 ( a )  indicates that  the thermal gradients (and the thermal 
variances of these data may be obtained by dividing these curves by wavenumber 
m2) are anisotropic, with more energy in the east-west direction. This is the situation 
for the perturbed banana cells of figure 5 (b ) .  When the Rayleigh number is increased, 
the average thermal variances become more equal (figure 6 b ) ,  reflecting the erosion 
of the Taylor columns. 

The spectra of the east-west gradient can be converted into thermal-variance 
spectra. Since most of the observed flows change considerably from picture to picture, 
the spectra have to be taken off a Mercator unfolding of a single circular image, 
although several such spectra can be averaged. This works best a t  mid-latitudes 
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FIQURE 6. Wavenumber spectra (in arbitrary units) of the observed thermal gradients as a function 
of longitudinal wavenumber at latitude 50' for (a)  as in figure 5 ( b ) ;  (b )  as in figure 5 ( c ) .  Solid lines 
reflect energy in the eastrwest gradients and dotted curves indicate energy in the north-south 
gradients. 

where the longitudinal coverage and resolution in the original image is the greatest. 
Figure 7 shows some typical spectra that will later be compared with the results from 
the numerical model. They are not reliable for longitudinal wavenumbers less than 
about 8, since the original images cover only about 45" in longitude. It is seen that 
in all cases most of the thermal energy is in wavenumbers between 10 and 20, with 
contributions by the second and higher harmonics. 

We have observed a quite varied set of convective structures. Space does not permit 
a detailed description of the transitions between states : discussion of these along with 
further analyses of the digitized data will be published elsewhere. The theoretical 
challenge is clearly to construct a model that at least distinguishes the pattern 
changes that occur when the rotation and heating parameters are varied in this 
experiment. 
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FIGURE 7. Temperature spectra for (a )  as in figure 5 ( b )  (banana cells); ( b )  as in figure 5 ( d )  
(spiral waves); (c) as in figure 5 ( h )  (triangular waves). 
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4. Results from numerical simulations 
We have chosen to augment our laboratory experiments with concurrent numerical 

modelling. The three-dimensional, nonlinear, Boussinesq equations (15)-( 17) are 
solved numerically using spherical harmonics, Chebyshev expansions, and collocation 
in a manner similar to that outlined in Glatzmaier (1983). A sketch of our procedure 
is given in the Appendix. The simulations, in order, cover approximately the same 
Rayleigh-number cases shown in figure 5.  However, constraints introduced by the 
need to  spatially resolve the flows limits the numerical studies to Ra 6 lo5. 

4.1. Banana cells: rapid rotation, H = 0 

We first discuss moderate to rapidly rotating cases for which the outer-boundary 
temperature and the higher inner-boundary temperature do not vary in latitude. The 
first case has a small Rayleigh number ( R a  = 4.1 x lo3) and a moderate Taylor 
number ( T a  = 3.8 x lo4, corresponding to an 8 s rotation period). The parameter 
Ta  Pr lRa is equal to the square of the ratio of the Coriolis and buoyancy frequencies, 
and large values suggest a substantial influence of rotation on the convection; that 
ratio here is 77. A photograph of the result of this simulation is shown in figure 8 ( a )  
(Plate 3). The model produces convection in the form of rolls aligned with the rotation 
axis, and in this rendition it is clear that the name ‘banana cells ’ is appropriate. Since 
radial velocity and temperature are correlated, this figure may be compared with the 
experimental case at essentially the same parameters (figure 5 a ) .  The second case has 
Ra = 7.9 x lo4 and T a  = 6.1 x lo5 (a 2 s rotation period). The T a  Pr lRa  ratio is 65, a 
value that again suggests significant Coriolis influence. A photograph for this 
scenario, figure 8 ( b )  (Plate 3) (see also figure 5 b ) ,  also shows the characteristic 
banana-cell velocity pattern a t  low latitude with the axes of the convective rolls 
parallel to the axis of rotation. The time-averaged Nusselt number for this case is 
about 4.9, as defined by the ratio of heat carried through the layer when convecting 
to that carried by conduction alone when quiescent; the Reynolds number, v,,,d/u, 
is about 30. 

In both the laboratory experiment and in the simulation, the banana-cell pattern 
propagates in longitude with a phase speed that is fundamentally different a t  high 
and low latitudes. As a result, the convective rolls continually shear and reconnect 
at  mid-latitude as in figure 8 ( b ) .  However, although the experimental and simulated 
convective patterns are in nice agreement, there is disagreement in the direction of 
the phase propagation at low latitude. In our numerical simulation the banana cells 
propagate in a retrograde direction with a speed substantially less than the maximum 
particle speed. In  the experiment, the banana cells propagate at about the same speed 
as those in the computations, but in a prograde direction. Subsequent integrations 
suggest that the direction of phase propagation is sensitive to the presence of 
relatively weak latitudinal variations in the boundary heating. Since one of the 
equatorial coolers did not function on the Spacelab flight, there was a small 
latitudinal gradient present in all the experiments. In  the presence of a latitudinal 
temperature gradient, certainly less than H = 0.2, our numerical simulations produce 
prograde phase propagation a t  low latitudes (see 54.4) in agreement with the 
experiment. 

The kinetic energy of the computed motion is largely due to non-axisymmetric 
flow, and is highly time dependent. The kinetic energy of the differential rotation is 
only about 1 yo of the total kinetic energy; and the kinetic energy of the meridional 
circulation is typically 0.1 yo of the total. The temporal variability is illustrated in 
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FIGURE 10. The various components of the volume-averaged kinetic energy for the solution in 
figure 8 ( b )  with H = 0, Ta = 6.1 x lo5, Ra = 7.9 x lo4. 

figure 10 for 100 s of simulated time (1000 timesteps). The small meridional circulation 
is again due to the Taylor-Proudman effect inhibiting flow parallel to  the axis of 
rotation. As a result, the Coriolis forces that maintain the differential rotation are 
also small. I n  addition, as suggested in previous calculations (Gilman 1973, 1978), 
the relatively high Prandtl number and the non-slip boundary conditions tend to 
suppress differential rotation for high-Taylor-number cases compared to simulations 
with a Prandtl number of unity and stress-free boundary conditions for which the 
nonlinear Reynolds stress maintains differential rotation (Gilman 1977 ; Glatzmaier 
1985). The thermal-energy spectrum (figure 14a) shows a peak a t  m = 0 that  repre- 
sents the response to  zonally averaged fluxes associated with the non-axisymmetric 
convection. A broad secondary peak exists near m = 16. The kinetic-energy spectrum 
has a similar profile but with a minimum a t  m = 0. 

4.2. Spiral waves: slow rotation, H =?= 0 

The next example has an imposed equator-to-pole temperature difference on the inner 
and outer boundaries. The pole is hotter than the equator and the inner boundary 
is hotter than the outer. We consider a scenario with Ra = 8.4 x lo3, Ta = 1 . 1  x lo3 
(48 s rotation period), and H = 1 .  Here the ratio T a  Pr lRa is 1.1 ,  suggesting a weak 
influence of rotation on the convection. After statistical equilibration the Nusselt 
number is about 3, the Reynolds number is about 10, and the fraction of the kinetic 
energy in the axisymmetric flow after three hours of simulated time is 90%. This 
last value is much higher than for the above cases with H = 0. 

Figure 9(a, b )  (Plate 4) shows graphical snapshots of our simulation. The striking 
characteristics of this scenario are the spiral updrafts that  extend from the pole to 
mid-latitude a t  about a 45" angle. This 'spiral-wave ' pattern does not dominate the 
whole hemisphere. At the same time, part of the hemisphere is dominated by narrow 
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FIQURE 11. Plots of longitudinally averaged quantities obtained from numerical simulations, (a)-(c) 
as in figure 9 ( a )  for spiral waves, (d)-cf) as in figure 12(b)  for banded structures. (a) and (d) show 
streamlines of meridional velocity. ( b )  and ( e )  give contours of temperature. ( c )  and (f) show 
contours of relative angular velocity (solid = prograde). 

north-south updrafts that extend from the pole to the equator without a significant 
inclination angle. All features propagate in the prograde direction (i.e. right to left). 
This simulation qualitatively agrees with the experiment. Indeed for conditions near 
this Rayleigh number, as well as for higher values, a mixture of spiral waves tilting 
eastward with latitude and non-inclined north-south cells have been observed and 
are illustrated in figure 5 ( d , f ) .  

In an attempt to understand the maintenance of the computed convective 
structure we consider the effect of the imposed latitudinal temperature difference on 
the axisymmetric flow which, as mentioned above, represents 90 yo of the total kinetic 
energy. Since fluid is cooled at the outer boundary and since the pole is hotter than 
the equator, the fluid flow near the outer boundary is from the pole to the equator. 
The resulting meridional circulation is illustrated in figure 11 (a), which shows 
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FIGURE 12. Radial velocity at mid-depth on a Mercator projection from the evolving numerical 
simulation. Both have Ta = 1.1 x lo3, Ra = 8.4 x lo3, and H = 1. (a) after 20 min, (b) after 2.5 h. 
(Solid = outward). 

meridional streamlines ; figure 11 (b) shows the longitudinally averaged meridional 
temperature profile. The Coriolis forces resulting from the meridional circulation 
produce a differential rotation (figure 11 c) with eastward flow in the equatorial region 
and near the inner boundary where fluid flows toward the axis of rotation, and 
westward flow near the outer boundary where fluid flows away from the axis. This 
strong differential rotation a t  small radii, increasing poleward, shears out the 
non-axisymmetric convection into spirals. 

4.3. Soccer balls: slow rotation, H = 0 
We now describe a scenario with slow rotation that has the same Rayleigh and Taylor 
numbers (Ra = 8.4 x lo3, Ta = 1.1 x lo3, 48 s rotation period) as in the previous 
example, but here the north-south temperature gradient is absent ( H  = 0).  
Figure 5 ( g )  shows a Schlieren photograph of the actual experiment for this scenario. 
The same convective pattern appears during the first hour of our numerical simulation. 
Figure 12(a) shows a Mercator projection of our simulated radial component of 
velocity on a constant-radius surface. 

The numerical simulation was continued for 2.5 h even though the spin-up time 
(d / (Qv)? )  is only about 0.5 min. Recall that  the corresponding laboratory experiment 
was run for only one hour during the flight, After the first hour, our numerical 
simulation slowly evolved from the ' soccer-ball ' pattern into a more axisymmetric 
pattern with hot, narrow upflow bands near the equator and near 60" latitude and 
cool downflow bands near 30" latitude and near the pole. This banded structure is 
illustrated in figure 11 ( d ) ,  showing streamlines of meridional circulation. This 
three-celled pattern is preferred in this slow-rotation case because the aspect ratio 
of the cells, in radius and latitude, is close to unity which is a compromise between 
the pressure-gradient work required to drive the horizontal flow and the viscous work 
resulting from the curvature of the flow. A comparison of figure 11 ( d )  with 11 ( e ) ,  a 
plot of the longitudinally averaged temperature profile, displays the correlation 
between the radial component of velocity and the fluid temperature. The longitudinal 
component of velocity also becomes nearly axisymmetric owing to the Coriolis forces 
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resulting from the meridional flow. That is, a strong retrograde flow (in the rotating 
frame of reference) develops near the equator owing to fluid moving away from the 
rotation axis, while a strong prograde (eastward) flow develops near 30" latitude 
because there fluid moves toward the rotation axis. At high latitude, fluid flows 
toward the pole near the outer boundary producing an eastward flow (cf. figure 11 d )  ; 
near the inner boundary i t  flows away from the pole producing a westward flow. This 
is illustrated in figure 1 1  ( f )  with contours of differential rotation. Although Coriolis 
forces dominate the maintenance of differential rotation, the convergence of the 
nonlinear Reynolds stress also makes a contribution, especially in the polar region. 
There the convergence of angular momentum helps to  maintain the prograde polar 
vortex that appears in figure 11 (f). I n  addition to this axisymmetric structure, as the 
flow evolved, a longitudinal wavenumber m = 2 pattern developed a t  high latitude 
with two large downdraughts on opposite sides of the globe. After about 1.5 h, 
kinetic energy a t  high latitude shifted from the m = 2 fluctuation to an m = 6 
dominance (figure 12 6 )  while maintaining a fairly axisymmetric banded structure at 
low latitude. This appears to be the final state. 

In  addition to this change in the convective structure, a very definite change in 
the phase propagation of the patterns occurred. During the first 1.5 h of our 
simulation the phase of the convection pattern propagated in a prograde direction 
when viewed in the rotating frame of reference. However, when the m = 6 mode 
became dominant at high latitude, it propagated in a retrograde sense. Then, within a 
few minutes, features at all other latitudes also began propagating in the retrograde 
sense. This new structure and phase propagation continued for the rest of our 
simulation. 

During this 2.5 h simulation, the total kinetic energy of the fluid remained fairly 
constant, and the Reynolds number was typically 10. However, the kinetic energy 
in the axisymmetric flow, i.e. meridional circulation and differential rotation, 
increased from about 50% of the total kinetic energy near the beginning of the 
simulation to over 90 % a t  2.5 h. The thermal-energy spectrum (temperature variance 
versus longitudinal wavenumber rn) during the 'soccer-ball ' phase has a maximum 
in the axisymmetric (m = 0) mode with energy per wavenumber dropping almost four 
orders of magnitude by m = 31. The kinetic-energy spectrum has a similar profile. 
A secondary peak develops at m = 6 near the end of the simulation. During our 2.5 h 
simulation, the Nusselt number remained nearly constant at about 2.69 & 0.03. This 
suggests that  the different convection modes, which dominated a t  different times 
during the simulation, were nearly equally efficient in transporting heat. Such long 
evolution times are typical in nonlinear systems that have modes with nearly equal 
growth rates. The identification of the competing modes in this problem is a desirable 
but complicated exercise beyond the scope of this paper. 

4.4. Triangular waves: rapid rotation, H += 0 

Finally, we consider a complex situation with rapid rotation, a relatively high 
Rayleigh number and a large pole-to-equator temperature difference. We set 
Ta = 6.1 x lo5 (a 2 s rotation period), H = 1.38, and Ra = 4.2 x lo4. The Nusselt and 
Reynolds numbers for this scenario are about 4 and 20 respectively. The differential 
rotation represents about 10 yo of the total kinetic energy, while the energy in 
the meridional circulation is about 0.5 7' of the total. These proportions are higher 
than those for the rapid rotation, H = 0 cases (banana cells), but smaller than those 
for the slow rotation, H =I= 0 cases (spiral waves). The profiles of the differential 
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Latitude 

FIQURE 13. Temperature field at mid-depth a t  one instant in time for Ta = 6.1 x lo5, 
H = 1.38, Ra = 4.2 x lo4. 

rotation and meridional circulation for this scenario are similar to those of the 
spiral-wave case shown in figure 11 (a, c ) .  

The striking characteristic of the corresponding experiment is the ‘triangular- 
wave ’ pattern at mid-latitude (figure 5h) .  We also see some indication of triangularly 
shaped ridges at mid-latitude in the temperature field of our numerical simulation 
(figure 13). These triangular patterns propagate in a retrograde direction along with 
the features at high latitude, while the features at low latitude propagate in a 
prograde direction. 

Cine films of the radial component of velocity in the simulation clearly show 
banana cells a t  low latitude propagating in the prograde direction and a less 
organized convective pattern a t  high latitude propagating in the retrograde direc- 
tion. The maximum phase speed is fairly small compared with the maximum fluid 
velocity of 0.2 cm/s. Patterns at low latitude tilt in the prograde direction while 
those a t  high latitude tilt in the retrograde direction. The interference of these two 
oppositely tilting patterns a t  mid-latitude may be responsible for the triangular 
ridges seen in the temperature field, which is the sum of the non-axisymmetric 
temperature perturbations corresponding to these radial velocity patterns and an 
axisymmetric, latitudinally increasing background temperature imposed by the 
boundary conditions. 

5. Summary 
We have studied thermal convection in a rotating hemispherical shell by comparing 

our laboratory results with three-dimensional numerical simulations. We have found 
nice qualitative and encouraging quantitative agreement between our simulations 
and laboratory experiments over a wide range of rotation rates, gravities and thermal 
boundary conditions. One can compare, for example, the computationally derived 
thermal-energy spectra in figure 14 with the corresponding experimental cases in 
figure 7 .  For the ‘banana-cell’ convection the major peak at about m = 15 is found 
in both systems (see figures 14a, 7a).  For the ‘triangular-wave’ case, the non- 
axisymmetric energy peaks at m = 9 and 12, and 13 respectively (figures 14c, 7 c ) .  
Only for the ‘spiral waves’ do the two measurements significantly disagree, with the 
numerical peak being at m = 8 compared with m = 14 for the experiment (figures 
14b, 7 b ) .  The experiments show that in this case, small changes in the Rayleigh 
number can cause large shifts in the peaks of the power spectra. 

We have found that when both the rotation rate and thermal driving are small, 
the majority of the kinetic energy is in the axisymmetric flow. The non-axisymmetric 
flow tends to be characterized by narrow updraughts and broad downdraughts. In 
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FIQURE 14. Thermal-variance spectra obtained from numerical simulations for (a) Tu = 6.1 x lo6, 
H = 0, Ru = 7 . 9 ~  lo4 (banana cells); (b) Tu = 1.1 x lo3, H = 1.0, Ru = 8.4 x lo3 (spiral waves); (c) 
Tu = 6.1 x lo6, H = 1.38, Ru = 4.2 x lo4 (triangular waves). 

addition, when the boundary temperature did not vary with latitude, the axisym- 
metric flow was banded in latitude and the non-axisymmetric structure in the com- 
putations slowly evolved from a polygonal tiling pattern (‘soccer ball ’) to a strong 
meridional cell with superimposed travelling waves. However, the total heat flux 
remained essentially constant during this evolution. On the other hand, when a 
pole-equator temperature difference was imposed on the boundaries, a strong 
single-celled meridional circulation developed which maintained a differential rota- 
tion with an eastward jet in the equatorial region. The associated non-axisymmetric 
flow was characterized by narrow updraughts sheared out into spirals by the zonal 
flow. 

In the high-rotation cases, most of the kinetic energy is in the non-axisymmetric 
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flow. ‘Banana cells’ dominate at low latitude as suggested by the Taylor-Proudman 
theorem. When a pole-to-equator temperature difference was imposed on the 
boundaries, ‘ triangular ’ patterns developed in the temperature field at mid-latitude. 
Our computations suggest that they may be due to the interference of the prograde- 
propagating convective patterns a t  the low latitude and the retrograde-propagating 
patterns a t  high latitude. With the detailed information available from our numerical 
simulations we shall attempt to understand the basic physics responsible for some 
of the simpler convective structures that were observed in the Spacelab experiment. 
One project is to determine the linear eigenfunctions for unstable modes of the 
non-conductive axisymmetric basic states. Another is to investigate the role of the 
r-5 gravity in breaking planform degeneracies. 

It is discouraging that as the convective structure and evolution become very 
complicated, the time-dependent nonlinear interaction of thousands of spectral 
modes in our numerical simulations becomes as difficult to understand as the actual 
experiment. It is gratifying, however, to see that the basic entities called Taylor 
columns, brought to light some 65 years ago in the fundamental experiments of 
G. I. Taylor (1921), appear again as organizing centres for convection in rotating 
spherical shells with central buoyancy forces over a wide range of external conditions. 
Our experiments have shown how these disturbances are modified when mid-latitude 
modes arise as the Rayleigh number is increased, or as the meridional circulation 
becomes large when an equator-to-pole temperature difference is imposed. They have 
illustrated the myriad and striking forms of fluid motion that can apparently occur 
in geometrically simple models of global convection with rotation and radial gravity. 
It is hoped that our results will in a small way inspire further exploration in this 
intriguing field. 
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with the digital processing (still continuing) of the photographic data. Thanks are 
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Appendix. The numerical procedure 
We shall here outline the semi-implicit, spectral representations that we employ 

in our nonlinear simulations of the three-dimensional convection. Within the 
Boussinesq approximation for an incompressible fluid, the density perturbation is 
not a function of the pressure perturbation. Therefore, we can remove the pressure 
from the svstem of equations by taking the curl of (16) and use the resulting vorticity 
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(V x v )  equation. Equation (15) allows us to write the velocity in terms of its poloidal 
W and toroidal Z scalar functions. In addition, we need the poloidal part, 6, of 
vorticity. Then W ,  2, c, and Tare expanded in spherical harmonics Yy with complex 
coefficients that are functions of radius and time. As a result, the radial, colatitudinal 
(O), and longitudinal components of velocity are 

1 
21, = - x Z(Z+ 1)  Wl"YZ", 

r2 1.m 

the radial component of vorticity is 

(A 4) 
1 

r 1 , m  
( V x v ) , = ,  c z(Z+l)zyYy, 

the radial component of the curl of vorticity is 

where 

1 

r 1.m 
( V x V x o ) , = ,  z l(l+l)CTY?, 

a 2  wy 
WP-- cT = -p- ar2 ' 

Z(Z+ 1) 

and the temperature perturbation is 
T =  x F Y y  

1 ,  m 

As discussed in Glatzmaier (1  983), the spherical-harmonic coefficients are expanded 
in Chebyshev polynomials to describe their radial dependence. 

A prognostic equation for ZT is obtained from the radial component of the curl 
of (16). The linear terms in this equation involve Wy!l, aWy*,/ar, Z y ,  and a2Zy/ar2. 
The radial component of the curl of the curl of (16) provides a prognostic equation 
for 52". The linear terms in this equation involve TF, ZG1, aZ&,/ar, cy, and a2c?/ar2. 
The diagnostic equation (A 6) is solved for W y .  Finally, a prognostic equation for 

This system of equations is eighth-order in space and third-order in time. Small, 
random perturbations in the temperature field and a zero velocity field relative to 
the rotating frame of reference provide the initial conditions. The impermeable and 
non-slip boundary conditions require W y ,  a W?/ar, and 27 to vanish at the inner 
and outer boundaries for all 1 and m. If a zero latitudinal temperature gradient is 
specified on the boundaries, all vanish there. If, however, a non-zero equator-pole 
temperature difference is specified, all F, except T: and Ti, vanish on the boundaries. 
At the inner boundary 

is obtained directly from (17). 

(A 8) 
Tg = $(4n):( Tie - T i p  ) , 

T p  - Top 
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where the subscripts 0, i, e, and p on the specified boundary temperature stand for 
outer, inner, equator and pole respectively. This provides smooth, monotonic, 
axisymmetric, latitudinal temperature profiles on the boundaries. 

In  addition, since we are modelling a hemisphere with an impermeable equatorial 
plane, we force symmetry with respect to the equator by making [T, W y  and 
vanish for odd (Z+m) and 22" vanish for even (Z+m). As a result, the colatitudinal 
component of velocity vanishes at  the equator; however, the radial and longitudinal 
components do not. Since the equatorial plane is non-slip in the actual experiment, 
the model-simulated velocity profiles at the equatorial plane differ somewhat from 
those observed in the experiment. However, the difference appears to be insignificant 
a short distance from the equatorial plane. 

The prognostic equations for cr, 22" and TP are integrated in time with a 
second-order, semi-implicit scheme via Chebyshev collocation. All spatial derivatives 
are computed analytically in spectral space; and all nonlinear terms are computed 
in physical space. The longitudinal and radial transformations between spectral and 
physical space, which are required a t  every timestep, are done via fast Fourier 
transforms ; the latitudinal transformations are done via Gaussian quadratures. The 
method is described in Glatzmaier (1983); however, we have made the following 
modification. The prognostic equation for and the diagnostic equation (A 6) for 
W y ,  both second-order in space, are solved simultaneously with a matrix equation 
for each 1 and m. The four boundary conditions required for this subsystem are the 
two conditions on W p  and the two conditions on a W y l a r ;  no boundary condition 
is applied on [P. 

Finally, we should comment on the spatial and temporal resolutions. In physical 
space, there are 96 longitudinal mesh points (spanning 360') times 24 latitudinal mesh 
points (pole to equator) times 17 radial mesh points (inner to outer boundary). In 
spectral space, the spherical harmonics are truncated according to 0 d JmJ < 1 < 31, 
which results in alias-free horizontal transformations. The Chebyshev polynomials 
are truncated at wavenumber 16. Our temporal resolution is dictated by the Courant 
condition; in terms of the physical variables in the laboratory experiment, the 
computational timestep is typically between 0.1 and 0.5 s. More than 3 h have been 
simulated for some scenarios, which corresponds to several hundred rotations. For 
Rayleigh numbers of order lo4, the CPU time required on a Cray XMP supercomputer 
is comparable with the actual experimental time that is simulated. For higher values, 
the increased spatial resolution that is required rapidly drives up the CPU time to 
the point that numerical simulation becomes impractical. 
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